Today I read a published paper titled “Natural Deduction as Higher-Order Resolution”
Dense. Maybe I am not cut out to understand programming and will always be a little computer hacker and nothing more.
The abstract is:
An interactive theorem prover, Isabelle, is under development. In LCF, each inference rule is represented by one function for forwards proof and another (a tactic) for backwards proof. In Isabelle, each inference rule is represented by a Horn clause. Resolution gives both forwards and backwards proof, supporting a large class of logics. Isabelle has been used to prove theorems in. Quantifiers pose several difficulties: substitution, bound variables, Skolemization. Isabelle’s representation of logical syntax is the typed lambda-calculus, requiring higher- order unification. It may have potential for logic programming. Depth-first subgoaling along inference rules constitutes a higher-order Prolog.