Today I read a paper titled “Texture feature extraction in the spatial-frequency domain for content-based image retrieval”
The abstract is:
The advent of large scale multimedia databases has led to great challenges in content-based image retrieval (CBIR)
Even though CBIR is considered an emerging field of research, however it constitutes a strong background for new methodologies and systems implementations
Therefore, many research contributions are focusing on techniques enabling higher image retrieval accuracy while preserving low level of computational complexity
Image retrieval based on texture features is receiving special attention because of the omnipresence of this visual feature in most real-world images
This paper highlights the state-of-the-art and current progress relevant to texture-based image retrieval and spatial-frequency image representations
In particular, it gives an overview of statistical methodologies and techniques employed for texture feature extraction using most popular spatial-frequency image transforms, namely discrete wavelets, Gabor wavelets, dual-tree complex wavelet and contourlets
Indications are also given about used similarity measurement functions and most important achieved results